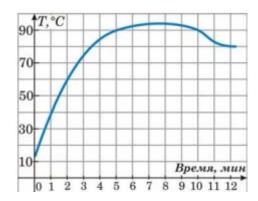
Единый государственный экзамен по МАТЕМАТИКЕ Тренировочный вариант № 30

Инструкция по выполнению работы

На выполнение экзаменационной работы по математике даётся 4 часа (240 мин). Работа состоит из двух частей и содержит 20 заданий. Часть 1 содержит 14 заданий с кратким ответом (В1—В14) базового уровня по материалу курса математики. Задания части 1 считаются выполненными, если экзаменуемый дал верный ответ в виде целого числа или конечной десятичной дроби.


Часть 2 содержит 6 более сложных заданий (С1–С6) по материалу курса математики. При их выполнении надо записать полное решение и ответ. Советуем для экономии времени пропускать задание, которое не удаётся выполнить сразу, и переходить к следующему. К выполнению пропущенных заданий вы сможете вернуться, если у вас останется время. Желаем успеха!

Часть 1

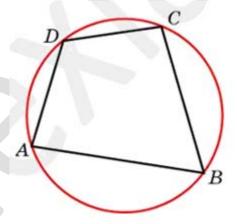
Ответом к заданиям этой части (В1–В14) является целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов № 1 справа от номера соответствующего задания, начиная с первой клеточки, без пробелов. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения писать не нужно.

B1 Аня купила месячный проездной билет на автобус. За месяц она сделала 45 поездок. Сколько рублей она сэкономила, если проездной билет стоит 800 рублей, а разовая поездка стоит 22 рубля?

B2 На рисунке показан график изменения температуры двигателя. Сколько минут температура была выше 90 градусов?

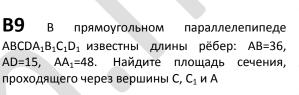
B3 Найдите площадь треугольника, вершины которого имеют координаты (2;2), (8;10), (8;8).

B4 Мебельный салон заключает договоры с производителями мебели. В договорах указывается, какой процент от суммы, вырученной за продажу мебели, поступает в доход мебельного салона.

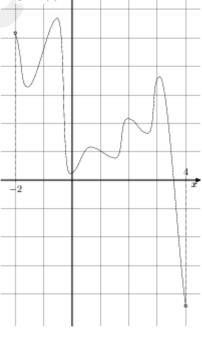

Фирма- производитель	Процент от выручки, поступающий в доход салона	Примечания
«Альфа»	5,5 %	Изделия ценой до 20000 руб.
«Альфа»	2,5 %	Изделия ценой свыше 20000 руб.
«Бета»	3 %	Все изделия
«Омикрон»	4,5 %	Все изделия

В прейскуранте приведены цены на четыре кресла-качалки. Определите, продажа какого кресла-качалки наиболее выгодна для салона. В ответ запишите, сколько рублей поступит в доход салона от продажи этого кресла-качалки.

Фирма-производитель	Изделие	Цена
«Альфа»	Кресло-качалка «Осина»	13500 руб.
«Альфа»	Кресло-качалка «Береза»	20500 руб.
«Бета»	Кресло-качалка «Рябина»	17500 руб.
«Омикрон»	Кресло-качалка «Шмель»	15000 руб.


В5 Решите уравнение $9^{2+5x} = 1.8 \cdot 5^{2+5x}$.

B6 Два угла вписанного в окружность четырехугольника равны 24° и 67° Найдите больший из оставшихся углов. Ответ дайте в градусах.



В7 Найдите значение выражения $5^{3\sqrt{7}-1} \cdot 5^{1-\sqrt{7}} : 5^{2\sqrt{7}-1}$

B8 На рисунке изображён график функции y = F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-2;4). Пользуясь рисунком, определите количество решений уравнения f(x) = 0 на отрезке [-1;3].

B10 На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов.

B11 Найдите объем многогранника, вершинами которого являются точки A, B, B_1 , C_1 прямоугольного параллелепипеда ABCDA₁B₁C₁D₁, у которого AB=5, AD=3, AA₁=4

B12 Емкость высоковольтного конденсатора в телевизоре $C=2\cdot 10^{-6}$ Ф. Параллельно с конденсатором подключен резистор с сопротивлением $R=5\cdot 10^6$ Ом. Во время работы телевизора напряжение на конденсаторе $U_0=16$ кВ. После выключения телевизора напряжение на конденсаторе убывает до

значения U (кВ) за время, определяемое выражением $t=lpha RC\log_2 rac{U_0}{U}$ (c), где lpha=0,7 — постоянная. Определите наибольшее возможное напряжение на

конденсаторе, если после выключения телевизора прошло не менее 21 с. Ответ дайте в кВ (киловольтах).

B13 Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 14 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 21 км/ч больше скорости другого?

В14 Найдите наименьшее значение функции $y = x^{\frac{3}{2}} - 3x + 1$ на отрезке [1;9] .

Часть 2

Для записи решений и ответов на задания С1—С6 используйте бланк ответов № 2. Запишите сначала номер выполняемого задания (С1, С2 и т.д.), а затем полное обоснованное решение и ответ.

C1 а) Решите уравнение
$$\left(tg\frac{19\pi}{3} - tgx\right)\cdot\sqrt{6\cos\frac{15\pi}{4}\cdot\cos\frac{x}{2} - \cos x - 3} = 0$$
 б) Найдите все корни на промежутке $\left[-\pi;\frac{3\pi}{2}\right]$

C2 Через середину диагонали куба проведена плоскость перпендикулярно этой диагонали. Найти отношение площади сечения куба данной плоскостью к площади полной поверхности куба.

СЗ Решите систему неравенств:

$$\begin{cases} 2^{x+3} - x^3 \cdot 2^x \le 16 - 2x^3 \\ \log_{0,1} (10^x - 9) \ge x - 1 \end{cases}$$

C4 Длины соседних сторон вписанного в окружность четырехугольника отличаются на 1. Длина наименьшей из них также равна 1. Найти радиус окружности.

C5 Найдите все значения параметра a , при которых при любых значениях параметра b уравнение |x-2|+b|2x+1|=a имеет хотя бы одно решение.

C6 Рассматривается набор гирь, каждая из которых весит целое число граммов, а общий вес всех гирь равен 500 граммов. Такой набор называется правильным, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 500, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом (тело кладется на одну чашку весов, гири - на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).

- а) Приведите пример правильного набора, в котором не все гири по одному грамму.
- б) Сколько существует различных правильных наборов?

(Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)